The MIPS32® 1004K™ Coherent Processing System (CPS) is the next advance in licensable processing technology from MIPS Technologies. The 1004K CPS is a highly scalable multiprocessor platform that supports up to four cores connected via a coherent system architecture. Through the inclusion of hardware multi-threading in each core, the 1004K CPS is optimized to maximize performance in System-on-Chip (SoC) implementations and overcome historical performance limitations in embedded systems due to memory constraints and access latencies.

MIPS32 1004K™ Coherent Processing System (CPS) Core

Baseline Specifications (Preliminary)

<table>
<thead>
<tr>
<th>Product</th>
<th>MIPS32® 1004K™ core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>TSMC 65GP</td>
</tr>
<tr>
<td>Frequency (MHz)</td>
<td>800</td>
</tr>
<tr>
<td>(worst case)</td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>1.6/Core</td>
</tr>
<tr>
<td>DMIPS/MHz</td>
<td></td>
</tr>
<tr>
<td>Total Area*</td>
<td>~3.8mm²</td>
</tr>
</tbody>
</table>

Note: Frequency, power consumption and size depend upon configuration options, synthesis, silicon vendor, process, and cell libraries

Quoted speeds don’t contain OCV, clock jitter or design margin.

*Configuration: 2 cores, each core with 2 VPEs/core and 32KB Inst/Data caches, Coherence Manager (CM), and Global Interrupt Controller (GIC)

Key Applications

Digital home:
- Enhanced set-top boxes (STBs)
- HD digital consumer multimedia
- Residential gateways (RGWs)

Enterprise Communications Infrastructure

Automotive Infotainment Systems

Office Automation/Multi-Function Products (MFPs)
- Medium/large office print/fax/scan

MIPS32 1004K CPS Highlights

- A coherent multiprocessor system using multi-threading to extend performance beyond traditional multiprocessor solutions
 - Up to four multi-threaded CPU cores, with two hardware threads/core
 - Multi-threading complements multi-core – leverages SMP operating systems and programming models, with minimal silicon cost adder

- Hardware I/O coherency – offloads CPU software I/O coherency overhead

- Configuration and scalability at core and system levels, addressing a broad range of price/performance implementation points for optimal product implementations

- Licensable IP core – enables broad industry adoption
Features

A complete system for coherent multiprocessing, including:

- 1 to 4 1004K multi-threaded "base" cores (up to 8 hardware threads)
- Coherence Management (CM) unit – the system "glue" for managing coherent operation between cores and I/O
- I/O Coherence Unit (IOCU) – hardware block for offloading I/O coherence from software implementation on CPUs
- Global Interrupt Controller (GIC) – system and inter-processor interrupt controller
- Extended 256-bit interface to L2 cache controller (available separately)
- EJTAG/PDtrace™ block for advanced debug/trace of complete coherent system

1004K Base Core

- 9-stage pipeline delivering more than 1.5 DMIPS/MHz per core
- Supports single- or dual-threaded operation per core
- Uses Virtual Processing Elements (VPEs) for hardware multi-threading
- Integer (1004Kc) and floating point (1004Kf) versions
- Support for Revision 1 of MIPS32 DSP ASE
- Coherency port has duplicate data cache tags for background coherency checks
- Design-time configurability for inclusion and sizing of instruction and data TLBs, caches, scratchpad RAM and other options

Coherency Management (CM) Unit

- Manages coherency using the MESI protocol
- Operates at same clock (1:1) as CPUs for maximum performance
- 256-bit extended interface for maximum throughput to (optional) L2 cache controller
- Supports performance enhancements via L1 cache-to-cache transfers, speculative reads to external memory, and globalized cache operations
- Global Configuration Registers (GCRs) for configuring/controlling CM scheme

I/O Coherence Unit (IOCU) – optional use

- Bridges non-coherent I/O peripheral transfer and makes transactions coherent
- Supports per transaction attributes for snooping L1 caches, L1+L2 caches, or non-coherent transactions, plus I/O prioritization

Global Interrupt Controller (GIC) – optional use

- Supports system-level interrupts; inter-processor interrupts
- Routes interrupts to particular core or VPE
- Configurable # of system interrupts (up to 256)

Development Tools

- MIPS SDE – GNU based toolchain optimized to support MIPS® cores
- MIPSSim™ - Bus functional modeling and instruction set simulator
- System Navigator™ probe – EJTAG and PDtrace prob

Uses multi-threading to deliver maximum performance from each core

Worldwide Offices

Headquarters
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353
United States
Phone: 650-567-5000
www.mips.com
info@mips.com

MIPS Technologies (Shanghai) Co., Ltd.
Shanghai, China
Phone: +86 21 6385 8383
Fax: +86 21 5306 0833

MIPS Technologies B.V.
Taipei, Taiwan
Phone: +886 2 2717 1999
Fax: +886 2 2716 0270

MIPS Technologies B.V.
Tokyo, Japan
Phone: +81 3 5733 9541
Fax: +81 3 5733 9545

MIPS Technologies B.V.
Remscheid, Germany
Phone: +49 2191 900 200
Fax: +49 2191 900 208

MIPS Technologies B.V.
Haifa, Israel
Phone: +972 4 851 5080
Fax: +972 4 851 5090